Excellent breakdown on
EVs
Batteries, they do not make electricity – they store electricity produced
elsewhere, primarily by coal, uranium, natural gas-powered plants, or
diesel-fueled generators. So, to say an EV is a zero-emission vehicle is
not at all valid.
Also, since forty percent of the electricity generated in the U.S. is from
coal-fired plants, it follows that forty percent of the EVs on the road are
coal-powered, do you see?"
Einstein's formula, E=MC2, tells us it takes the same amount of energy to move
a five-thousand-pound gasoline-driven automobile a mile as it does an electric
one. The only question again is what produces the power? To reiterate, it does
not come from the battery; the battery is only the storage device, like a gas
tank in a car.
There are two orders of batteries, rechargeable, and single-use. The most
common single-use batteries are A, AA, AAA, C, D. 9V, and lantern types. Those
dry-cell species use zinc, manganese, lithium, silver oxide, or zinc and carbon
to store electricity chemically. Please note they all contain toxic, heavy
metals.
Rechargeable batteries only differ in their internal materials, usually
lithium-ion, nickel-metal oxide, and nickel-cadmium. The United States uses
three billion of these two battery types a year, and most are not recycled;
they end up in landfills. California is the only state which requires all
batteries be recycled. If you throw your small, used batteries in the trash,
here is what happens to them.
All batteries are self-discharging. That means even when not in use, they
leak tiny amounts of energy. You have likely ruined a flashlight or two from an
old, ruptured battery. When a battery runs down and can no longer power a toy
or light, you think of it as dead; well, it is not. It continues to leak small
amounts of electricity. As the chemicals inside it run out, pressure builds
inside the battery's metal casing, and eventually, it cracks. The metals left
inside then ooze out. The ooze in your ruined flashlight is toxic, and so is
the ooze that will inevitably leak from every battery in a landfill. All
batteries eventually rupture; it just takes rechargeable batteries longer to
end up in the landfill.
In addition to dry cell batteries, there are also wet cell ones used in
automobiles, boats, and motorcycles. The good thing about those is, ninety
percent of them are recycled. Unfortunately, we do not yet know how to recycle
single-use ones properly.
But that is not half of it. For those of you excited about electric cars
and a green revolution, I want you to take a closer look at batteries and also
windmills and solar panels. These three technologies share what we call
environmentally destructive production costs.
A typical EV battery weighs one thousand pounds, about the size of a travel
trunk. It contains twenty-five pounds of lithium, sixty pounds of nickel,
44 pounds of manganese, 30 pounds cobalt, 200 pounds of copper, and 400 pounds
of aluminum, steel, and plastic. Inside are over 6,000 individual lithium-ion
cells.
It should concern you that all those toxic components come from mining. For
instance, to manufacture each EV auto battery, you must process 25,000 pounds
of brine for the lithium, 30,000 pounds of ore for the cobalt, 5,000 pounds of
ore for the nickel, and 25,000 pounds of ore for copper. All told, you dig up
500,000 pounds of the earth's crust for just - one - battery."
Sixty-eight percent of the world's cobalt, a significant part of a battery,
comes from the Congo. Their mines have no pollution controls, and they employ
children who die from handling this toxic material. Should we factor in these
diseased kids as part of the cost of driving an electric car?"
I'd like to leave you with these thoughts. California is building the largest
battery in the world near San Francisco, and they intend to power it from solar
panels and windmills. They claim this is the ultimate in being 'green,' but it
is not. This construction project is creating an environmental
disaster. Let me tell you why.
The main problem with solar arrays is the chemicals needed to process silicate
into the silicon used in the panels. To make pure enough silicon requires
processing it with hydrochloric acid, sulfuric acid, nitric acid, hydrogen
fluoride, trichloroethane, and acetone. In addition, they also need gallium,
arsenide, copper-indium-gallium- diselenide, and cadmium-telluride, which also
are highly toxic. Silicon dust is a hazard to the workers, and the panels
cannot be recycled.
Windmills are the ultimate in embedded costs and environmental destruction.
Each weighs 1688 tons (the equivalent of 23 houses) and contains 1300 tons of
concrete, 295 tons of steel, 48 tons of iron, 24 tons of fiberglass, and the
hard to extract rare earths neodymium, praseodymium, and dysprosium. Each blade
weighs 81,000 pounds and will last 15 to 20 years, at which time it must be
replaced. We cannot recycle used blades.
There may be a place for these technologies, but you must look beyond the myth
of zero emissions.
"Going Green" may sound like the Utopian ideal but when you look at
the hidden and embedded costs realistically with an open mind, you can see that
Going Green is more destructive to the Earth's environment than meets the eye,
for sure.
Obviously copied/pasted. I encourage you to pass it along too.
No comments:
Post a Comment